Cell-derived unesterified cholesterol cycles between different HDLs and LDL for its effective esterification in plasma.

نویسندگان

  • Y Huang
  • A von Eckardstein
  • G Assmann
چکیده

Pulse-chase incubations of human plasma with [3H]cholesterol-laden skin fibroblasts or low density lipoproteins (LDL) and nondenaturing two-dimensional electrophoresis were used to study the transfer and esterification of cell-derived unesterified cholesterol (UC) in human plasma lipoproteins. Specific radioactivities ([3H]UC per microgram of UC) were calculated, and net cholesterol mass transfer was quantified using a fluoro-enzymatic assay to validate productive transfers of UC between high density lipoprotein (HDL) and LDL. Cellular UC was initially taken up by pre-beta 1-HDL and subsequently transferred in the sequence pre-beta 2-HDL-->pre-beta 3-HDL-->alpha-HDL-->LDL. During the first 5 minutes of this process, only 5% of cellular cholesterol was esterified in pre-beta 3-HDL and alpha-HDL; the remainder reached LDL as UC. Cellular UC accumulating in LDL was then redistributed to various HDL particles via two pathways: 1) the partially LDL receptor-mediated uptake and re-secretion of UC by cells and 2) the direct transfer of UC to HDL, mostly to alpha-HDL and a small amount to pre-beta-HDL. UC was not transferred from LDL to HDL after inhibition of lecithin:cholesterol acyltransferase (LCAT). The esterification of cellular [3H]cholesterol in plasma was competitively inhibited by the addition of excess unlabeled LDL but not of excess HDL. However, both excess LDL and excess HDL prevented the esterification of cell-derived cholesterol in apolipoprotein B-free plasma. This demonstrated that LDL is the major source of UC to the LCAT reaction and that the transfer of UC from LDL to HDL is LCAT dependent. In conclusion, the effective esterification of cell-derived cholesterol in plasma involves a rapid transfer of UC via HDL particles to LDL, from which it is distributed to pre-beta-HDL and alpha-HDL. Furthermore, we hypothesize that the transfer per se of cellular UC to LDL forms a cholesterol concentration gradient between cell membranes and HDL and thus a second, reverse cholesterol transport mechanism in addition to the esterification of cholesterol by LCAT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts

Niemann-Pick disease type C (NPC) is characterized by substantial intracellular accumulation of unesterified cholesterol. The accumulation of unesterified cholesterol in NPC fibroblasts cultured with low density lipoprotein (LDL) appears to result from the inability of LDL to stimulate cholesterol esterification in addition to impaired LDL-mediated downregulation of LDL receptor activity and ce...

متن کامل

Mechanism and Physiologic Significance of the Suppression of Cholesterol Esterification in Human Interstitial Fluid

Cholesterol esterification in high density lipoproteins (HDLs) by lecithin:cholesterol acyltransferase (LCAT) promotes unesterified cholesterol (UC) transfer from red cell membranes to plasma in vitro. However, it does not explain the transfer of UC from most peripheral cells to interstitial fluid in vivo, as HDLs in afferent peripheral lymph are enriched in UC. Having already reported that the...

متن کامل

Oxidized low density lipoprotein leads to macrophage accumulation of unesterified cholesterol as a result of lysosomal trapping of the lipoprotein hydrolyzed cholesteryl ester.

The early atherosclerotic lesion is comprised of foam cell macrophages filled with cholesteryl ester (CE), unesterified cholesterol (UC), and cholesterol oxides. Upon incubation of macrophages with oxidized low density lipoprotein (Ox-LDL), they accumulate UC rather than CE, which was shown to accumulate after incubation of cells with acetylated LDL (Ac-LDL). Using lipoproteins that were doubly...

متن کامل

Differences in the metabolism of oxidatively modified low density lipoprotein and acetylated low density lipoprotein by human endothelial cells: inhibition of cholesterol esterification by oxidatively modified low density lipoprotein.

The rate of degradation of oxidatively modified low density lipoprotein (Ox-LDL) by human endothelial cells was similar to that of unmodified low density lipoprotein (LDL), and was approximately 2-fold greater than the rate of degradation of acetylated LDL (Ac-LDL). While LDL and Ac-LDL both stimulated cholesterol esterification in endothelial cells, Ox-LDL inhibited cholesterol esterification ...

متن کامل

Acute effects of intravenous infusion of ApoA1/phosphatidylcholine discs on plasma lipoproteins in humans.

To investigate the metabolism of nascent HDLs, apoA1/phosphatidylcholine (apoA1/PC) discs were infused IV over 4 hours into 7 healthy men. Plasma total apoA1 and phospholipid (PL) concentrations increased during the infusions. The rise in plasma apoA1 was greatest in small prebeta-migrating particles not present in the infusate. Total HDL unesterified cholesterol (UC) also increased simultaneou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis and thrombosis : a journal of vascular biology

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 1993